DOUBLY CHARGED IONS OF BRIDGED [4n]ANNULENES. AN EVALUATION OF DIATROPIC RING CURRENT EFFECTS.

Klaus Müllen ^{a)+}, Thomas Meul ^{a)}, Emanuel Vogel ^{b)}, Ulf Kürschner ^{b)}, Hans Schmickler ^{b)}, and Olof Wennerström ^{c)}

a) Department of Organic Chemistry, University of Mainz, D-6500 Mainz, J.J.Becher-Weg 18-22, FRG

b) Department of Organic Chemistry, University of Cologne, D-5000 Köln 41, Greinstraße 4, FRG

c) Department of Organic Chemistry, Chalmers University of Technology, S-412 96 Göteborg, Sweden

Summary: [4n]Annulenes are transformed into doubly charged ions (dianion, dication) and characterized NMR spectroscopically. The diatropic character of the ionic (4n+2)π-systems is studied as a function of the number of π-electrons.

The reduction and oxidation of annulenes have proven model experiments for bond theory and spectroscopy since they allow the ready interconversion of (4n)- and $(4n+2)\pi$ -systems¹. The successful transformation of the rigid [4n] annulene $\underline{1}^2$ into both its dianion, $\underline{1}^{2-}$, and dication, $\underline{1}^{2+}$, provides the unique opportunity of comparing different electronic configurations within one and the same molecular framework³. In a complementary approach one can compare the dianions $\underline{2}^{2-}$, $\underline{1}^{2-}$ and $\underline{5}^{2-}$ which constitute a series of structurally related $(4n+2)\pi$ -systems with different ring sizes.

The dianion $1^{2^{-}}$ has been prepared by reacting degassed solutions of the 1,6:9, 14-bismethano[16] annulene 1 in tetrahydrofuran (THF) with highly active lithium in vacuo. The salt $1^{2^{-}}/2$ Li⁺ crystallizes from the solvent as violet needles, is stable at room temperature (THF-solution, exclusion of air) and can be reoxidized to 1 upon reaction with dry oxygen. The dication $1^{2^{+}}$ is obtained by oxidation of 1 with antimony pentafluoride in fluorosulfurylchloride at -80°C. The structural proof of the ions rests upon an analysis of their ¹H and ¹³C NMR spectra (see Table and Figure) ⁴.

The most remarkable spectroscopic result is the large upfield shift observed for the resonances of the bridge protons upon going from the neutral compound to the dianion ($\Delta \delta = -14.3$) or the dication ($\Delta \delta = -10.9$). The signals of the ring protons in $1^{2^{-}/2}$ Li⁺ are markedly downfield from those in 1, despite the expected charge-induced shielding; similarly, the analogous signals of $1^{2^{+}/2}$ SbCl₆⁻ are at much lower field than predicted from the charge effect alone. The deshielding (shielding) of the ring (bridge) protons

Figure 1 H NMR spectra (60 MHz) of the neutral annulene 1 as well as of its corresponding dianion $(1^{2^{-}}/2 \text{ Li}^{+})$ and dication $(1^{2^{+}}/2 \text{ SbCl}_{6}^{-})$ (see text).

in both the dianion and dication must be ascribed to a pronounced ring current effect: i.e. the paratropic neutral [4n] annulene 1 is transformed into strongly diatropic $(4n+2)\pi$ -systems. The number of ¹³C NMR resonances of 1^{2^-} and 1^{2^+} indicates that the ions preserve the original molecular framework, and must be regarded as π -bond delocalized species. The individual ¹³C chemical shifts also reflect the local π -charge densities ¹. The proportionality constants $K_c = \Delta \delta_c / \Delta q_{\pi}$ which are calculated from the average charge-induced signal shifts of the ring carbons and from the mean π -charge density, are 186 ppm/e for

 $1^{2^{-}}$ and 175 ppm/e for $1^{2^{+}}$. These values are typical for diatropic ions ⁵. Also indicative of the π -bonding in the ions are the vicinal H, H-coupling constants $({}^{3}J_{HH})$ of the ring protons ⁴ which can be correlated with the corresponding π -bond orders. Thus, while 1 must be regarded as a π -bond localized species with a strong preference for the "diene-type" structure indicated in the formula, the ions are π -bond delocalized. While a syn-configuration of the bridges within $1^{2^{-}}$ and $1^{2^{+}}$ cannot be rigorously excluded, the analogy with the behaviour of the neutral compound is best explained by ion structures with a planar perimeter and anti-positioned methylene-groups. Moreover, the bending of a perimeter with syn-configurated bridges would significantly weaken the diatropism of the ions.

Table 1

 1 H (δ_{H}) and 13 C (δ_{H}) NMR chemical shifts and vicinal H, H-coupling constants (J [Hz]) of neutral, dianionic, and dicationic annulenes ^{a)}

		bridge						
	1	2	3	7	нь	Н	J (H-2, H-3)	J (H-3,H-4)
δ _H (<u>1)</u> ^{b)}		5.09	5.03	4.77	8.30	5.68	10.73	8.74
$\delta_{H}^{(1^{2})}(1^{2})$		8.24	6.93	7.92	-8.52	-6.20	8.94	8.71
$\delta_{\mathrm{H}}(\underline{1}^{2+})^{\mathrm{d}}$		11.02	10.56	11.81	-5.71	-2.29	9.45	9.99
δ _H (2 ²⁻)		7.56	6.51	5.5 ^{e)}	-6.08	- 5.52	8.3	8.5
$\delta_{\rm H}^{(5^{2}-)}$		7.40 ^{g)} 8.99	7.12 ^{h)} 7.13	-3.91	-3.27	-2.42	8.6 ⁱ⁾	8.7
$\delta_{C}(\underline{1})^{(j)}$	140.3	135.8	126.6	131.4	39.0			
$\delta_{C}(\underline{1}^{2})^{k}$	114.1	115.7	103.5	107.7	21.3			
$\delta_{C}(\underline{1}^{2+})^{(1)}$	154.3	154.3	148.8	164.2	24.8			

a) Dianions as Li⁺-salts, dications as SbF₆⁻-salts; b) 300 MHz, CD₂Cl₂, 20^oC; c) 60 MHz, THF-d₈, 10^oC; d) 60 MHz, SO₂CIF, 0^oC; CD₃COCD₃, ext.; no correction for the differences of diamagnetic susceptibilities; e) H-7, H-8, H-9; f) H-8: $\delta = 6.99$; J(H-7, H-8) = 13.3; g) H-2, H-5; h) H-3, H-4; i) J(H-2, H-3) = J(H-4, H-5); j) 75 MHz, CDCl₃, 20^oC; k) 75 MHz, THF-d₈, -20^oC; I) 75 MHz, SO₂CIF, 0^oC; CD₃COCD₃, ext.

In order to rationalize the ring current phenomena in $1^{2^{-}}$ and $1^{2^{+}}$ the experimental ¹H chemical shifts must be corrected for the influence of the π -charge upon the ring protons and for the electric field effect of the π -charge upon the bridge protons ^{1,6}. The resulting ring current induced deshielding (shielding) of ring protons (outer bridge protons) amounts to $\Delta \delta = +4.0$ ($\Delta \delta = -10.4$) in $1^{2^{-}}$ and to $\Delta \delta = +4.8$ ($\Delta \delta = -9.4$) in $1^{2^{+}}$. One concludes that the diamagnetic ring current effects in the 18π - and in the 14π -system are of similar magnitude. We point out that the pair $1^{2^{-}}/1^{2^{+}}$ is the first example of two geometrically identical $(4n+2)\pi$ -systems with a difference of four π -electrons and that the above experimental result is in agreement with the theoretical prediction of Pople and Untch ⁷ as well as Haddon ⁸.

This outcome must be contrasted with the well-known fact that in a homologous series of neutral [4n+2]annulenes the measurable ring current effect ^{9,10} decreases with ring size due to the increasing tendency toward π -bond fixation. That this trend is, indeed, much less pronounced for <u>ionic</u> (4n+2) π -systems has been demonstrated by us for a homologous series of [4n+2] annulene tetraanions ¹¹ and can also be inferred from a comparison of $\underline{1}^{2}/2$ Li⁺ with the dianion of the structurally related [12] annulene $\underline{2}^{12}$. The diatropic character is only slightly larger in the higher homologue. Including, finally, structurally related [14] - and [18] annulenes which are isoelectronic with $\underline{1}^{2+}$ and $\underline{1}^{2-}$, respectively, it follows that the diatropism of the ions is much more pronounced; this outcome is readily explained by the strong tendency toward π -bond delocalization in the charged species.

It was along this line of argument that we reduced the non-planar [24] annulene 5^{13} into its dianion. The ¹H NMR data, in particular the number of (i) independent resonances, (ii) the high-field absorption of the bridge protons and (iii) the large shift-difference of the outer and inner protons (H-7, H-8) at the trans-double bond, leave no doubt that $5^{2^{-}/2}$ Li⁺ adopts a structure with a C_3 -axis, is not conformationally labile ¹⁴ and is strongly diatropic. The formation of a π -bond delocalized, diatropic 26π -dianion must be contrasted with both the olefinic character of the neutral [24] annulene 5 and the weak diatropism of neutral [26] annulenes ¹⁰ and is in full accord with the description of the lower-membered dianions $1^{2^{-}}$ and $2^{2^{-}}$.

References

- 1. K. Müllen, Chem. Rev. 1984, 84, 603.
- D. Tanner, O. Wennerström, E. Vogel, Tetrahedron Lett. <u>1982</u>, 1221; E. Vogel, U. Kürschner, H. Schmickler, J. Lex, O. Wennerström, D. Tanner, U. Norinder, C. Krüger, Tetrahedron Lett. <u>1985</u>, preceding.
- J.F.M. Oth, H. Baumann, J.-M. Gilles, G. Schröder, J.Am.Chem.Soc. <u>1972</u>, 94, 3498;
 J.F.M. Oth, D.M. Smith, U. Prange, G. Schröder, Angew.Chem. <u>1973</u>, 85, 352; Angew.Chem., Int.Ed.Engl. <u>1973</u>, 12, 327.
- 4. The assignment of the ¹H NMR signals follows from the splitting patterns, the differentiation of H-2 and H-3 is based upon the long-range coupling with the bridge protons. The ¹³C NMR signals have been assigned via selective proton decoupling experiments. The exact analysis of the AA'BB' spin system of H-2-H-5 has been performed by the ITRCAL program (Bruker).
- 5. U. Edlund, B. Eliasson, K. Müllen, submitted for publication.
- 6. H. Günther, "NMR-Spektroskopie", Thieme Verlag, Stuttgart 1973, p. 92.
- 7. J.A. Pople, K.G. Untch, J.Am.Chem.Soc. 1966, 88, 4811.
- 8. R.C. Haddon, J.Am.Chem.Soc. 1979, 101, 1722.
- 9. E. Vogel, Isr. J. Chem. 1980, 20,215.
- 10. M. Nakagawa, Pure Appl. Chem. 1975, 44,885.
- K. Müllen, W. Huber, T. Meul, M. Nakagawa, M. Iyoda, J.Am.Chem.Soc. <u>1982</u>, 104, 5403;
 K. Müllen, W. Huber, T. Meul, M. Nakagawa, M. Iyoda, Tetrahedron <u>1983</u>, 39, 1575.
- J.F.M. Oth, K. Müllen, H. Königshofen, M. Mann, Y. Sakata, E. Vogel, Angew. Chem. <u>1974</u>, 86, 232; Angew. Chem., Int. Ed. Engl. <u>1974</u>, 13, 184.
- 13. E. Vogel, U. Kürschner, M. Köcher, unpublished results.
- A rotation of the trans-double bond around the neighboring single bonds would interconvert the magnetic sites of H-7 and H-8.
 - (Received in Germany 1 April 1985)